SequelGate Training Institute/ Hadoop Training Institute/ Hadoop Classroom Training/ Hadoop Online Training

Hadoop Training

 

Big Data and Hadoop Certification course is designed to prepare you for a job assignment in the Big Data world. The course provides you not only with Hadoop 2.7 essential skills, but also gives you practical work experience in Big Data Hadoop by completing long-term, real-world projects. You’ll use Hadoop 2.7 with CloudLab—a cloud-based Hadoop environment lab—to complete your hands-on project work.

 

Schedules & Timings

Brochure 
 
 Training Modes: Online / Classroom / Video
Training Silos: Fast-Track / One-One / Weekend

 * Job Support Available

 
Register Today
 
Trainer Name Exp Details
Srinivas 19+ Profile
Vamsi krishna 15+ Profile

Hadoop Classroom Training

Brochure 
 

Highlights

  • ✔ Completely Practical and Realtime
  • ✔ Theory Material provided in Advance
  • ✔ Highly Interactive and Interesting
  • ✔ Certification Guidance and FAQs
  • ✔ 80% Hands on Training, 20% Theroy part Explanantion

One Real-Time Project

 

 

Hadoop Training Course Content

Introduction to Hadoop
  • High Availability
  • Scaling
  • Advantages and Challenges
Introduction to Big Data
  • What is Big data
  • Big Data opportunities
  • Big Data Challenges
  • Characteristics of Big data
Introduction to Hadoop
  • Hadoop Distributed File System
  • Comparing Hadoop & SQL
  • Industries using Hadoop.
  • Data Locality
  • Hadoop Architecture.
  • Map Reduce & HDFS.
  • Using the Hadoop single node image (Clone).
The Hadoop Distributed File System (HDFS)
  • HDFS Design & Concepts.
  • Blocks, Name nodes and Data nodes.
  • HDFS High-Availability and HDFS Federation.
  • Hadoop DFS The Command-Line Interface
  • Basic File System Operations
  • Anatomy of File Read
  • Anatomy of File Write
  • Block Placement Policy and Modes
  • More detailed explanation about Configuration files.
  • Metadata, FS image, Edit log, Secondary Name Node and Safe Mode.
  • How to add New Data Node dynamically.
  • How to decommission a Data Node dynamically (Without stopping cluster).
  • FSCK Utility. (Block report).
  • How to override default configuration at system level and Programming level.
  • HDFS Federation.
  • ZOOKEEPER Leader Election Algorithm.
  • Exercise and small use case on HDFS. 
Map Reduce
  • Functional Programming Basics.
  • Map and Reduce Basics
  • How Map Reduce Works
  • Anatomy of a Map Reduce Job Run
  • Legacy Architecture ->Job Submission, Job Initialization, Task Assignment, Task Execution, Progress and Status Updates
  • Job Completion, Failures
  • Shuffling and Sorting
  • Splits, Record reader, Partition, Types of partitions & Combiner
  • Optimization Techniques -> Speculative Execution, JVM Reuse and No. Slots
  • Types of Schedulers and Counters.
  • Comparisons between Old and New API at code and Architecture Level.
  • Getting the data from RDBMS into HDFS using Custom data types.
  • Distributed Cache and Hadoop Streaming (Python, Ruby and R).
  • YARN.
  • Sequential Files and Map Files.
  • Enabling Compression Codec’s.
  • Map side Join with distributed Cache.
  • Types of I/O Formats: Multiple outputs, NLINEinputformat.
  • Handling small files using CombineFileInputFormat.
Map/Reduce Programming – Java Programming
  • Hands on “Word Count” in Map/Reduce in standalone and Pseudo distribution Mode.
  • Sorting files using Hadoop Configuration API discussion
  • Emulating “grep” for searching inside a file in Hadoop
  • DBInput Format
  • Job Dependency API discussion
  • Input Format API discussion
  • Input Split API discussion
  • Custom Data type creation in Hadoop.
NOSQL
  • ACID in RDBMS and BASE in NoSQL.
  • CAP Theorem and Types of Consistency.
  • Types of NoSQL Databases in detail.
  • Columnar Databases in Detail (HBASE and CASSANDRA).
  • TTL, Bloom Filters and Compensation.
HBase
  • HBase Installation
  • HBase concepts
  • HBase Data Model and Comparison between RDBMS and NOSQL.
  • Master  & Region Servers.
  • HBase Operations (DDL and DML) through Shell and Programming and HBase Architecture.
  • Catalog Tables.
  • Block Cache and sharding.
  • SPLITS.
  • DATA Modeling (Sequential, Salted, Promoted and Random Keys).
  • JAVA API’s and Rest Interface.
  • Client Side Buffering and Process 1 million records using Client side Buffering.
  • HBASE Counters.
  • Enabling Replication and HBASE RAW Scans.
  • HBASE Filters
  • Bulk Loading and Coprocessors (Endpoints and Observers with programs).
  • Real world use case consisting of HDFS,MR and HBASE.
Hive
  • Installation
  • Introduction and Architecture.
  • Hive Services, Hive Shell, Hive Server and Hive Web Interface (HWI)
  • Meta store
  • Hive QL
  • OLTP vs. OLAP
  • Working with Tables.
  • Primitive data types and complex data types.
  • Working with Partitions.
  • User Defined Functions
  • Hive Bucketed Tables and Sampling.
  • External partitioned tables, Map the data to the partition in the table, Writing the output of one query to another table, Multiple inserts
  • Dynamic Partition
  • Differences between ORDER BY, DISTRIBUTE BY and SORT BY.
  • Bucketing and Sorted Bucketing with Dynamic partition.
  • RC File.
  • INDEXES and VIEWS.
  • MAPSIDE JOINS.
  • Compression on hive tables and Migrating Hive tables.
  • Dynamic substation of Hive and Different ways of running Hive
  • How to enable Update in HIVE.
  • Log Analysis on Hive.
  • Access HBASE tables using Hive.
  • Hands on Exercises
Pig
  • Installation
  • Execution Types
  • Grunt Shell
  • Pig Latin
  • Data Processing
  • Schema on read
  • Primitive data types and complex data types.
  • Tuple schema, BAG Schema and MAP Schema.
  • Loading and Storing
  • Filtering
  • Grouping & Joining
  • Debugging commands (Illustrate and Explain).
  • Validations in PIG.
  • Type casting in PIG.
  • Working with Functions
  • User Defined Functions
  • Types of JOINS in pig and Replicated Join in detail.
  • SPLITS and Multiquery execution.
  • Error Handling, FLATTEN and ORDER BY.
  • Parameter Substitution.
  • Nested For Each.
  • User Defined Functions, Dynamic Invokers and Macros.
  • How to access HBASE using PIG.
  • How to Load and Write JSON DATA using PIG.
  • Piggy Bank.
  • Hands on Exercises
SQOOP
  • Installation
  • Import Data.(Full table, Only Subset, Target Directory, protecting Password, file format other than CSV,Compressing,Control Parallelism, All tables Import)
  • Incremental  Import(Import only New data, Last Imported data, storing Password in Metastore, Sharing Metastore between Sqoop Clients)
  • Free Form Query Import
  • Export data to RDBMS,HIVE and HBASE
  • Hands on Exercises.
HCATALOG.
  • Installation
  • Introduction to HCATALOG.
  • About Hcatalog with PIG,HIVE and MR.
  • Hands on Exercises.
FLUME
  • Installation
  • Introduction to Flume
  • Flume Agents: Sources, Channels and Sinks
  • Log User information using Java program in to HDFS using LOG4J and Avro Source
  • Log User information using Java program in to HDFS using Tail Source
  • Log User information using Java program in to HBASE using LOG4J and Avro Source
  • Log User information using Java program in to HBASE using Tail Source
  • Flume Commands
  • Use case of Flume: Flume the data from twitter in to HDFS and HBASE. Do some analysis using HIVE and PIG
More Ecosystems
  • HUE.(Hortonworks and Cloudera).
Oozie
  • Workflow (Action, Start, Action, End, Kill, Join and Fork), Schedulers, Coordinators and Bundles.
  • Workflow to show how to schedule Sqoop Job, Hive, MR and PIG.
  • Real world Use case which will find the top websites used by users of certain ages and will be scheduled to run for every one hour.
  • Zoo Keeper
  • HBASE Integration with HIVE and PIG.
  • Phoenix
  • Proof of concept (POC).
SPARK
  • Overview
  • Linking with Spark
  • Initializing Spark
  • Using the Shell
  • Resilient Distributed Datasets (RDDs)
  • Parallelized Collections
  • External Datasets
  • RDD Operations
  • Basics, Passing Functions to Spark
  • Working with Key-Value Pairs
  • Transformations
  • Actions
  • RDD Persistence
  • Which Storage Level to Choose?
  • Removing Data
  • Shared Variables
  • Broadcast Variables
  • Accumulators
  • Deploying to a Cluster
  • Unit Testing
  • Migrating from pre-1.0 Versions of Spark
  • Where to Go from Here
share training and course content with friends and students:
  • hadoop training in hyderabad
  • big data hadoop training cost in hyderabad
  • hadoop training fees in hyderabad
  • big data training in hyderabad
  • HADOOP TRAINING IN HYDERABAD Hyderabad Telangana
  • fee for hadoop in hyderabad
  • hadoop training
  • hadoop coaching in hyderabad
  • bigdata and hadoop training in hyderabad
  • hadoop certification course duration & course fee

Register Today